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ABSTRACT

Todd Goldfinger

MSEE

Rose-Hulman Institute of Technology

December 2005

Real-Time DSP Implementation of an Acoustic-Echo-Canceller with a Delay-Sum

Beamformer

Dr. Wayne T. Padgett

Traditional telephony uses only a single receiver for speech acquisition. If the

speaker is standing away from the telephone, the signal will be weak and there will

be interference sources from room reverberation. In addition, there is acoustic echo

coming from the loudspeaker, which further interferes with the signal of interest. This

research investigated the combination of common solutions to these problems. Elec-

tronic beamforming steered an array of microphones within software to enhance the

signal power. Echo cancellation removed the echo coming from the loudspeaker. In

combination these processing techniques can greatly enhance user experience.
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Chapter 1

Introduction

In hands-free telephony it is necessary to remove acoustic echo in the near end

room from the speech acquisition system. This echo is created when the loudspeaker

and microphone are placed in the same room – a necessary setup for teleconferencing.

Echo removal is typically done using a method such as Normalized Least Mean Squares

(NLMS) or Recursive Least Squares (RLS).

An enhancement to the speech acquisition system is to use an array of microphones.

By spatially sampling the acoustic wavefront, it is possible to increase the Signal-to-

Noise Ratio (SNR) and the Signal-to-Interference Ratio (SIR). This is necessary when

the talker is far from the microphone because the power level falls off proportional to

the square of the distance. In addition, the microphone array is directional and can

help cancel the acoustic echoes that do not propagate along the same path as the near

end talker’s speech.

This thesis investigated Acoustic Echo Cancellation (AEC) in combination with a

Delay-Sum Beamformer using a microphone array. The final implementation was done



2

in real time on a Digital Signal Processor (DSP). For the thesis research, all discussions

assumed there were two rooms. Both rooms had one talker, one loudspeaker, and a

Uniform Linear Array (ULA).
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Chapter 2

Acoustic Echo Cancellation

2.1 System Identification for AEC

AEC is a system identification problem. It is first necessary to identify the Room

Transfer Function (RTF). Figure 2.1 depicts the problem. Assume the near end speech,

sn, is zero, and the noise, nn, is zero. The subscript n denotes the current sample.

Identification of the filter requires solving a system of equations using the reference

signal, xn, and the input signal (or desired signal), yn, for each time step. LMS or

RLS are often used to solve the problem of finding the adaptive filter. Neither solution

is sufficient for this application. Further discussion is found in Section 2.2.3. The

RTF is modeled using a linear filter. The length of the filter is chosen based on the

reverberation time of the room and the desired level of Echo Return Loss Enhancement

(ERLE). A reasonable reverberation time is between 0.1 and 0.3 seconds. This means

the filter must have more than a thousand taps for a sample rate of at least 8 kH

Nonlinear signals and echoes with a reverberation time greater than the filter length
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Figure 2.1: Acoustic Echo Cancellation Problem

are not modeled and consequently are not removed. Once the RTF is found, it is used

to filter the reference signal. The result is subtracted from yn. This is the error, en.

For AEC, the error is the signal of interest. The filter itself is not used except as part

of the algorithm.
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2.2 Adaptive Algorithms

There are many algorithms that can be applied to solve the AEC problem. Follow-

ing is a description of algorithms that are often used. The Affine Projection Algorithms

were specifically developed to deal with highly correlated signals such as speech.

2.2.1 RLS

One way to find the filter at each time step is by using the Least Squares method.

Define the hermetian transpose, xH , of a matrix, x, such that xH .
= xT . Superscript T

designates the transpose such that the elements xi,j are swapped with xj,i where i and

j are row and column indices, respectively. Minimize the error,

En
.
=

∑
n=0

|yn − ĥH
n xn|2 (2.1)

This can be rewritten as the normal equations using the time averaged autocorrelation

matrix and cross-correlation vector. Define

dn
.
=

∑
n=0

xnyn

Rxx,n
.
=

∑
n=0

xnx
H
n

Then the linear Least Square Error (LSE) estimator can be written

En =
∑
n=0

|y2
n| − ĥH

n dn − dH
n ĥn + ĥH

n Rxx,nĥn

= y2
n − dH

n R−1
xx,ndn + (Rxx,nĥn − dn)HR−1

xx,n(Rxx,nĥn − dn) (2.2)

And the minimum sum of squared errors is y2
n − dH

n ĥn. For a positive definite ma-

trix, Equation 2.2 is maximized under the following condition, known as the normal

equations,

Rxx,nĥn = dn (2.3)
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It would be impractical to solve this equation for every new sample. Instead, the

inverse of the autocorrelation matrix is updated recursively. The algorithm is known

as the Conventional RLS. For a full explanation and the CRLS equations see the work

of Manolakis [14]. CRLS is still complexity O(n2), which is not acceptable for a long

filter. Although there are even faster versions, most are numerically unstable and

difficult to implement.

2.2.2 NLMS

Another way to solve for the normal equations is to use an iterative method such

as the Steepest Descent Algorithm (SDA). The SDA uses Equation 2.2 to solve the

normal equations. To make the SDA adaptive in time, the autocorrelation matrix

and cross-correlation vector are replaced with instantaneous time estimates and the

iteration index is changed to be over time. The autocorrelation matrix is now rank

one and a vector can be factored out so that the matrix is implicit. The result is the

LMS. An improvement upon LMS is to normalize the step by dividing by the power

of the input signal. This makes the step size independent of the power, and the result

is known as Normalized LMS.

Let ĥn be the adaptive filter of length n, µ be the step size, and xn be the previous

n samples of xn. The NLMS equations are

ŷn = ĥT
nxn (2.4)

en = yn − ŷn (2.5)

ĥn+1 = ĥn +
µenxn

xT
nxn

(2.6)
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Equation 2.4, does the filtering. It estimates the next input sample, yn, using

the adaptive filter and the reference signal. Equation 2.5 finds the error between the

estimated input signal and the actual input signal. The step size will be proportional

to the error. Equation 2.6 updates the adaptive filter by taking a step based on the

size of the error and the gradient.

2.2.3 Affine Projections

System Identification is an iterative process that uses the error at each time step

to converge. Growing memory RLS will converge to the Minimum Mean Square Error

(MMSE), which is the same as the minimum LSE for an ergodic source. For self-

correlated signals (which include speech), NLMS will converge slowly and not to the

MMSE as seen in Manolakis [14]. There is some tradeoff between the rate of conver-

gence and the steady state MSE, which can be controlled by adjusting the step size.

NLMS also has a slow tracking speed due to its slow convergence. The convergence

and tracking speed of NLMS are not sufficient for AEC according to Benesty [3]. In

addition, RLS is not feasible due to the computational complexity resulting from the

long echo path.

Another algorithm, known as the Affine Projection Algorithm (APA) by Ozeki

[15], is a generalization of NLMS. In NLMS, the adaptive filter is modified by a step

in the direction determined only by xn. APA overcomes this limitation by looking at

previous vectors and correcting the direction of the step. It has faster convergence

for correlated signals and a lower complexity than RLS. APA requires a projection
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parameter, p, which should be between 1 and 50 for speech (p=1 is NLMS). Let

Xn
.
= [xn, · · · ,xn−(P−1)]. The APA algorithm as defined by Gay [11] is

ŷn = Xn
T ĥn (2.7)

en = yn − ŷn (2.8)

ε = (XT
nXn + δI)−1en (2.9)

ĥn+1 = ĥn + µXnε (2.10)

The δ parameter is known as regularization and is used to decrease the condition

number of the autocorrelation matrix so that the algorithm converges. The cost of

regularization is a bias in the solution. A real symmetric positive definite matrix has

positive eigenvalues as seen in Weisstein [20]. Let A be positive definite and λk be the

eigenvalues of B = A + δI. Using the definition of eigenvalues

Bx = λkx

(A− (λk − δ)I)x = 0

The λk − δ are the eigenvalues of A. So, λk > δ and the new condition number is

max{λk}+ δ

min{λk}+ δ
<

max{λk}
min{λk}

(2.11)

This parameter needs to be chosen carefully. If it is too large, the filter will not converge

to the correct answer. If it is too small, the filter will diverge.

2.2.4 Fast Affine Projections

A faster version of APA, known as the Fast Affine Projection Algorithm (FAP)

by Gay [11], reduces the complexity enough to be feasible for AEC. FAP is more
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computationally intensive than NLMS, but it is also comparable to RLS in convergence

speed at even a low order. To achieve the reduction in complexity, FAP finds only an

approximation of en. Through eigenvalue analysis it is shown that

en ≈

 en

(1− µ)en−1

 (2.12)

Another complexity reduction is to update an approximation to the adaptive filter

instead of the true adaptive filter. Because the a priori error, en, is calculated from ĥn,

an intermediate calculation of the approximate a priori error must be found before the

true error is found. Finally, the update of the inverse of the autocorrelation matrix is

done using the Sliding Window Fast Transversal Filter (SWFTF) by Cioffi [8]. It works

by finding the normalized residual echo, ε, through updating forward and backward

linear predictor vectors and prediction error energies. The savings occur because the

vectors are the length of the projection order instead of the length of the filter as

would be true in the usual case. Unfortunately, the FTF algorithm is unstable, even

in floating point, and can be difficult to implement.

In Ding [9], an additional assumption is made that µ ≈ 1. This means the right side

of Equation 2.12 simplifies to a scalar. This causes Equation 2.9 to be simplified so that

only the left most column of the inverse of the autocorrelation matrix is needed. One

iteration of the conjugate gradient method is used for each sample period to update the

left column. Thus the algorithm is called the Conjugate Gradient Fast Affine Projection

algorithm (CGFAP). A small modification is to use the lower complexity Gauss-Seidel

iterations instead. This thesis used GSFAP by Albu [2] shown in Figure 2.2. It requires

less computation than the other algorithms while still maintaining stability. Equation

2 in the figure is two rank one updates of the autocorrelation matrix. Equation 3 is the
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update of P – the left row of the inverse of the autocorrelation matrix. Equation 4 is

the update of the approximation filter. Equation 5 is the update of the a priori error.

The first two terms are the approximation error. The next term is the correction to

get the true output error. Equation 6 updates the residual echo. Equation 7 updates

the sum of residual echo vector.

Figure 2.3 compares the misalignment of Gauss-Seidel and Fast Transversal Filter

FAP and NLMS. Sample refers to the sample number at 8 kH. Misalignment is a

measure how close the adaptive filter is to the true filter and is defined as

‖ ĥn − hn ‖
hn

(2.13)

The Gauss-Seidel filter converged by at least 12 dB more than FTFFap and NLMS.

Figure 2.4 compares the ERLE for these same algorithms. ERLE is a measure of how

much of the echo power has been removed and is defined as the ratio of the input power

to the output power

10 log10

y2
n

e2
n

(2.14)

Again, the Gauss-Seidel version has around 10 dB more ERLE. The most likely reason

for the FTFFap’s poor performance is that a much larger regularization value than the

one used for GSFap was needed for it to converge.
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Initialization

V (−1) = 0, η(−1) = 0, s(−1) = 0,

R(−1) = δI, α = 1, P (−1) = b/δ (1)

Processing in sampling interval n

R(n) = R(n− 1) + ξ(n)ξT (n)− ξ(n− L)ξT (n− L) (2)

Solve R(n)P(n) = b using one GS iteration (3)

V (n) = V (n− 1) + αηN−1(N − 1)X(n−N) (4)

e(n) = d(n)− V T (n)X(n)− αηT (n− 1)R̃(n) (5)

ε(n) = e(n)P (n) (6)

η(n) =

 0

η(n− 1)

 + ε(n) (7)

Figure 2.2: Gauss-Seidel Fast Affine Projection Algorithm. (Reproduced with the

permission of IEEE, Albu [2]).
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Figure 2.3: Misalignment comparison of NLMS, FAP with FTF, FAP with GS. (This

is only an approximation for FAP. The true adaptive filter is never found.)
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Figure 2.4: ERLE comparison of NLMS, FAP with FTF, FAP with GS.
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2.2.5 Block Exact Fast Affine Projections

Even NLMS is computationally expensive for a long echo path. It is desirable to

reduce the computation further. The savings may be necessary if there are many echo

cancellers. One way to do this is to use a block adaptive filter. A block algorithm only

adapts the filter every L samples, where L is the block length. When the filter is not

changing, convolution implemented using the Fast Fourier Transform (FFT) can be

used to decrease the amount of computation as noted by Shynk [17]. Block adaptive

filters achieve the minimum computation when the FFT is the same length as the filter.

However, for a long filter, this would introduce too much delay.

Although block algorithms are more efficient, the filter converges slower. A block

exact algorithm corrects the errors, and the output is exactly equivalent to the original

algorithm except for numerical error. The cost of using a block exact algorithm is delay

and more memory storage. This thesis used the Block Exact Fast Affine Projection

Algorithm (BEFAP) by Tanaka [18]. However, instead of using FTF to update the gain,

Gauss-Seidel iterations were used for stability reasons. The algorithm is reproduced

in Figure 2.5. Equation 1 of the figure is block filtering. This can be done using

fast matrix operations or implementing fast convolution via the FFT. The next set of

equations recursively updates the quantities needed to update the prefilter coefficients.

Equation 3 finds the error and corrects it. Equation 4 updates the error vector. This

is not used with the Gauss-Seidel version. Equation 5 updates the autocorrelation

matrix and the inverse. Equation 6 updates the prefilter coefficients needed to correct

the error and the filter. Equation 8 updates the approximation filter.
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Figure 2.5: Block Exact Fast Affine Projection Algorithm. (Reproduced with the

permission of IEEE, Tanaka [18].)
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Figure 2.5 (cont.)
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2.2.6 Controlling Convergence

As mentioned in Section 2.2.3, the condition number of the autocorrelation matrix

determines convergence. It is shown in Figures 2.6 and 2.7 how the regularization,

used to control the condition number, and step size parameter effects convergence.

The regularization parameter needs to be chosen based on the maximum size of the

condition number. The size of the condition number depends on the power level. If

there is a way to reduce the range of the power level, it might be possible to choose

a smaller regularization parameter without causing divergence. One option is to try

Automatic Gain Control (AGC) on the reference signal. Although it is usually a bad

idea to modify the reference signal, AGC can be a desirable feature in telephony. An

unfortunate side effect is the added delay by the amount of the block size.

Figure 2.8 shows the results of experiments applying gain control for better con-

vergence at a given condition number. The total power was normalized to 1 dB. All

parameters were identical. In this case, the filter nearly diverged right at the start for

the non-AGC control case, but thereafter began to reconverge. However, even after

ten seconds, the error was still 40 dB larger than the AGC case.

In Figure 2.9A only a small improvement of the condition number when using AGC

is shown. However, as seen in Figure 2.9B the smallest singular values are much larger

with AGC. According to Rombouts [16], the FAP algorithms amplify noise due to small

singular values. This may partially explain the improvement in convergence.
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Figure 2.6: (A) and (B) NLMS with a step size of 0.98 using a 1024 tap adaptive filter

on composite source signals. (C) and (D) Using a step size of 0.15. (A) and (C) In the

absence of noise. (B) and (D) With noise 21.45 dB down from the average power of

the source.
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Figure 2.6 (cont.)
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A

B

Figure 2.7: (A) and (B) BEGSFAP with a step size of 0.98 using a 1024 tap adaptive

filter on composite source signals. (C) and (D) Using a step size of 0.15. (A) and (C)

In the absence of noise. (B) and (D) With noise 21.45 dB down from the average power

of the source.
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C

D

Figure 2.7 (cont.)
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Figure 2.8: Output error with and without AGC.
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(A) Condition Numbers

(B) Singular Values

Figure 2.9: (A) Effect of AGC on condition number. (B) On the smallest singular

value.
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In Figure 2.6, the regularization parameter of NLMS varied over two orders of

magnitude, and the result was about 5 dB to 10 dB of convergence difference. In Figure

2.7, the regularization parameter of GSFAP varied about one order of magnitude, and

this resulted in as much as 10 dB to 20 dB of convergence difference. The results of

Figure 2.8 show that AGC can control convergence. And it is seen in Figure 2.9 how

AGC effects the condition number and smallest singular values.
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Chapter 3

Double Talk Detection

3.1 Echo Cancellation Scenarios

The assumption of Section 2.1 was that sn = 0. If the near talker is speaking, sn 6= 0

and the filter will diverge. In this case, adaptation of the filter must be disabled. Table

3.1 shows four cases that need to be addressed.

It is relatively easy to detect when the reference signal, xn, is zero. In the other two

Table 3.1: Adaptation Cases

sn xn adapt

=0 =0 no

6=0 =0 no

=0 6=0 yes

6=0 6=0 no
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cases a detection statistic is calculated and compared against a threshold to distinguish

between sn 6= 0 and sn = 0.

3.2 Detection Methods

A common Double Talk Detection (DTD) scheme is the Geigel method. It is compu-

tationally cheap but not effective for AEC. The Normalized Cross-Correlation method

has good performance for AEC but is expensive. The cheap version, however, has an

excellent performance-to-computation ratio. The Receiver Operating Characteristic

(ROC) in Figure 3.1 compares the performance of Geigel, CNCR, and the Variance

Impulse Response (VIRE) algorithm by Ȧhgren [1], which is not discussed here. The

goal of DTD is to minimize both the probability of false double talk and the probability

of a double talk miss. Ideally, the ROC should lie on the axes, indicating perfect DTD.

Comparatively, CNCR has done well.

3.2.1 Geigel

The Geigel method is

ξn
.
=

∣∣∣∣∣ yn

max{|xn|, . . . , |xn−m+1|}

∣∣∣∣∣ (3.1)

For far end speech only, yn should be smaller than the last several samples of xn.

During double talk, yn should be about the same as xn due to the power of the near

end speech. Thus during double talk, ξn should be larger than for far end speech

only. Unfortunately it is difficult to choose m for a long echo path. And the threshold

depends on the acoustic echo path. Note, however, that this method is completely

independent of the adaptive filter.
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Figure 3.1: ROC

3.2.2 Cheap Normalized Cross-Correlation (CNCR)

The Normalized Cross-Correlation method by Benesty [4] uses a detection statistic

that compares the estimated power of the input signal to the true power of the input
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signal. The statistic is

ξn
.
=

√
dT

n (σ2
y,nRxx,n)−1dn (3.2)

Using Equation 2.3 and

σ2
y,n = dT

nR−1
xx,ndn (3.3)

The statistic is rewritten as

ξn =

√√√√ hT
nRxx,nhn

hT
nRxx,nhn + σ2

s,n

(3.4)

When the near end speech power, σ2
s,n, is zero, ξn = 1. Otherwise, ξn < 1.

The cheap version replaces the RTF, hn, with the model of the RTF, ĥn, and

simplifies the numerator using Equation 2.3 resulting in

ξn =

√√√√dT
n ĥn

σ̂2
y,n

(3.5)

One last simplification shows that the numerator is just the cross-correlation between

the input signal and the filtered approximation of the input signal Ȧhgren [1]. Then

the detection statistic is

σ̂2
y,n = dT

n ĥn

= σ̂2
y,n−1 + y2

n − y2
n−N (3.6)

σ̃2
y,n = σ̃2

y,n−1 + ynŷn − yn−N ŷn−N (3.7)

ξn =

√√√√ σ̃2
y,n

σ̂2
y,n

(3.8)

If the echo canceller has not fully converged, the detection statistic for CNCR will be

invalid, and so it is difficult to choose a meaningful threshold. The problem is the
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worst during double talk when the detection statistic is most needed. Instead of using

a threshold for this thesis, the detection statistic was interpreted as the probability of

single talk. The rate of adaptation was made proportional to the detection statistic

µ
.
=

ξ − T

1− T
(3.9)

where T was a parameter to control how ξ is mapped onto µ. If ξ < T , µ was set

to zero to prevent the relaxation from becoming negative. Figure 3.2 compares this

method to using various thresholds. The results of the second figure from the top show

the adaptation step size for three different thresholds and the method proposed here.

Notice that between 30000 and 35000 samples, when the simulation switched from

double talk to single talk and back to double talk, the proposed method was correctly

adapting, while the other methods were not.

3.2.3 Complexity Comparison

From the ROC it is clear that CNCR is a desirable detection statistic. Table 3.2

shows that it has an excellent computational complexity.
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Table 3.2: The computational complexity calculation assumes one operation for add,

subtract, multiply, absolute value, and 10 operations for divide.

Detection Statistic Complexity

CNCR 18

VIRE n+9

Geigel 2m+11
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Figure 3.2: Comparison of Thresholding versus Proportionality
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Chapter 4

Delay-Sum Beamforming

4.1 Electronic Beamforming

It is possible to increase the quality of a signal by using an array of microphones.

The signal power is increased by sampling the acoustic waveform in multiple places.

This also makes it possible to steer the array from within software or electronically.

Assume the source is far from the array and that the wavefront is planar. A simple

way to steer the array is to align the signals in time and sum, thereby increasing signal

power in one direction while decreasing noise and interference in all other directions.

In the frequency domain, the beamformer is

S(ω)
.
=

K∑
k=1

LkSk(ω)e−jωdk (4.1)

Sk(ω)
.
= s(ω)e−jωτk (4.2)

where Lk is the path loss of the signal, sk(ω) is the signal received at the kth micro-

phone, τk is the time for the wave to propagate from the source to microphone k, and

dk is the insertion delay used to shift and align the signals. Ideally dk are chosen so
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that

τk + dk = τj + dj = C,∀k, j (4.3)

The result is a spatially matched filter. Under the condition of Equation 4.3, the array

output of the matched filter is

S(ω) = s(ω)e−jωC
K∑

k=1

Lk (4.4)

If the Lk are constant, the beamforming gain is K according to Manolakis [14]. The

theoretical array response for two situations is shown in Figure 4.1 . Refer to Yu-Kang

[13] for an in depth analysis of a delay-sum beamformer.

4.1.1 Inter-Element Spacing

The microphones were spaced one half the minimum wavelength apart in a linear

array. If the spacing were greater, the array would have spatial aliasing problems. If

the spacing had been less, the aperture of the array would be smaller than it needed

to be for optimum performance as seen in Manolakis [14].

4.1.2 Wide Beam Response

A perfectly aimed array will pass all frequencies. However, if any delays are off, it

acts as a low pass filter. A few attempts at constructing an inverse filter did not yield

useful results. Correcting the wide beam response is left for further research. Figure

4.2 shows the frequency response of the array summed overall angles.
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A B

Figure 4.1: (A) Theoretical array response aimed at 0 degrees. (B) Aimed at 45

degrees.

4.2 Time-Delay Estimation (TDE)

Aligning the time signals required finding the time delay between consecutive mi-

crophones. Finding the TDE was done using the cross-correlation. Since the delay

needed to be accurate to a fraction of a sample, phase information was necessary to

find the subsample delay. Thus the delays were found using the slope of the cross-power

spectral phase. This was another reason microphones were spaced half a wavelength

apart of the maximum frequency. The maximum frequency travels only half a cycle
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Figure 4.2: Low Pass Filtering Effect of Array.

between microphones. This means the angle is limited to the range [−π, π] and the

phase did not wrap, keeping the slope estimation simple.
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Let c be the speed of sound and rmk
be the distance from the source to microphone

k. As in Yu-Kang [13], define the signal at the kth microphone and its spectrum to be

smk
(t)

.
= Lks(t−

rmk

c
) (4.5)

Smk
(ω)

.
= LkS(ω)e−ω

rmk
c (4.6)

In the absence of noise and reverberation, the cross-power spectrum between any

two consecutive microphones is

Xmk,mk+1
(ω) = Smk

(ω)Smk+1
(ω) (4.7)

= LkLk+1|S(ω)|2e−ω
rmk

−rmk+1
c (4.8)

= LkLk+1|S(ω)|2e−ωτmk,mk+1 (4.9)

The phase, τmk,mk+1
, is also the time delay, and the sample delay is ∆ = τmk,mk+1

fs

2π
,

where fs is the sample frequency.

To keep the amount of computation low, only the time delays were found. The

source location was implicit as the goal was to increase SNR. The total delay for each

microphone is the sum of all previous delays. One microphone must be chosen as

the starting point, and a constant offset must be added to each delay to remove any

negative delays.

The cross-spectrum phase under various noise conditions is shown in the simulations

of Figure 4.3. It does not take a significant amount of noise to corrupt the results when

a pure tone is used. However, using a square wave appears to have better results. It is

also interesting to note that the cross-spectrum appears to have more phase corruption

at frequencies distant from the pure tone used.
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Figure 4.3: Cross-Spectrum Phase Plots. (A) Noise is 56.2 dB below signal power (B)

Noise is 76.3 dB below signal power (C) Square wave
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Figure 4.3 (cont.)

4.2.1 Least Squares Estimation

After finding the cross-power spectral phase, the slope of the line needs to be

estimated. Noise and reverberation will corrupt the slope of the line. To improve the

estimate of the fit, estimates of the SNR were used at each frequency as weighting

factors as seen in Yu-Kang [13] and Chan [6].

4.3 Delay Filters

Satisfying the condition of Equation 4.3 requires noninteger delays. One way to

do this is filtering with a sinc, but this has significant amplitude error compared to
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other methods as shown in Cain [7]. The polynomial interpolation method of Farrow

[10] has little error over more than half the frequency bandwidth as seen in Figure 4.4.

The error between the ideal delay filter and the fractional delay filter is shown for all

frequencies and delays between -0.5 and 0.5 samples. Because most of the power in

speech is in the first 2 kH, error near half the sampling frequency can simply be ignored.

Furthermore, large errors in the estimated delays themselves makes it unnecessary for

the filters to have a near perfect delay response.

Each filter tap is a polynomial function of the fractional portion of the delay. The

polynomials are found by minimizing the MSE between the desired filter and the ideal

delay filter, hid = ejω∆, over a given frequency range. Polynomial coefficients allow the

delay to be variable at every sample, and calculating a new filter is still computationally

cheap. For a delay-sum beamformer, the delays were only changed once per frame. The

Maple code is provided in Appendix A for finding the polynomials.
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Figure 4.4: Filter Magnitude Error
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Chapter 5

AEC with Beamforming

There are two ways to combine echo cancellation with beamforming. One method

is to place a single echo canceller after the beamformer. This greatly reduces the

computation required. However, the beamformer will become a part of the echo path.

The long acoustic filter of the slow converging NLMS cannot adapt quickly enough

to the short adaptive filter of the beamformer according to the work of Benesty [3].

The simpler method is to place an echo canceller after every microphone and make the

beamformer operate on the output of the echo cancellers as in Figure 5.1. Obviously

the amount of computation will depend heavily on the number of microphones.

This thesis studied only the later method due to time constraints. It was a straight-

forward matter to combine AEC with beamforming. One advantage of using this

method in combination with the Block Exact GSFAP was that the solution to the

affine projection equations needed only to be calculated once per sample for all micro-

phones. This occurred because the equations depended only on the reference signal,

which was common to all input channels. Computation was further reduced by updat-

ing the equations less than once per sample.
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Figure 5.1: Structure of AEC with Beamforming

5.1 Using Poles

Most adaptive echo cancellation techniques are zero-only models. The room transfer

function zeros depend on the size, shape, and materials of the room as well as the source,

receiver and object positions in the room. The poles correspond to room resonances

that are independent of the location of objects within the room. The method of Haneda

[12] estimates the theoretical room poles using a Common-Acoustical-Pole and Zero
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Model. The estimation uses a number of different source and receiver positions because

poles are expressed at all source and receiver positions.

It is impractical to model all or even most of the poles in room. The theoretical

number of poles in a room of volume V is given by Haneda [12] as

poles =
π

3
V (

fs

c
)3 (5.1)

For even low sample rates, such as those used in telephony, and given a small room,

the number of poles is too large. So the number of poles estimated is much less

than the theoretical number in the room. The calculation done this way yields poles

corresponding to the largest resonances in the room.

Once the poles are known, they can be placed before, as shown in Figure 5.2, or

after the adaptive portion of the filter. By using a pole and zero model, the order of

the echo cancellers can be reduced while maintaining a given level of ERLE. Thus,

it would be possible to increase the aperture size of the array at a given amount of

computation if memory and physical constraints allow.

The comparison in Figure 5.3 was generated by using fifteen simulated RTFs, as

they would appear on a ULA, to generate the poles. The sixteenth input was filtered

against the poles and run through NLMS. It is seen that the ERLE was better by

about 5 dB with poles. The poles version used a filter with 1024 coefficients and

another 500 coefficients for the poles. The other filter was length 2048. Additional

research is necessary to determine how well this works in a real environment with

estimated RTFs. Finding the poles required solving a matrix equation on the order

of the number of poles. A real-time implementation might require starting the array

with only adaptive echo cancellers and introducing poles at some later time.
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Figure 5.2: Structure of AEC with Poles.
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Figure 5.3: AEC with and without Poles.
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Chapter 6

Real-Time Implementation

6.1 Setup

The microphone array consisted of seven microphones in a nearly ULA arrangement

and is shown in Figure 6.1. Each input was sampled at 8 kHz and the DC removed.

Although there was a time delay of 1
16

sample between sampling of consecutive micro-

phone signals, time-delay estimation and delay filters corrected this problem.

Each of the seven signals were run through a 1024 coefficient adaptive filter of

projection order 16. Each signal was stored in a frame buffer of length 256. This was

also the block size for convenience. The reference signal was sampled, run through

AGC, and placed in the output buffer. The previous reference signal frame was used

for echo cancellation. The modified CNCR method proposed in this thesis was applied

to the left most microphone with an experimentally determined scaling parameter to

find the relaxation parameter for AEC. The same relaxation parameter was used for

all microphones. One Gauss-Seidel iteration was done each cycle and the solution
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was used for all seven signals. Block filtering was done using optimized FFT routines

before and after the error correction and step direction adjustment phases. To reduce

computation further, the imaginary portion of the FFT was used to calculate two

simultaneous FFTs (Appendix B).

Following completion of the echo removal, the beamformer processed the resultant

signals. The implementation was nearly the same as in Yu-Kang [13], but with tem-

poral averaging and group variance thresholding disabled for experiments. The seven

microphones were spatially Hamming windowed. Each signal was temporarily Hanning

windowed to preserve phase before taking the 256 point FFT. Time delay estimation

used the generalized least squares function on the positive frequencies with the last

twenty samples left off to avoid possible phase wrapping due to noise. The time delays

were sub-array averaged. The delays were shifted so that the left most microphone had

no delay and the right most microphone was the sum of the previous delays. Delays

greater than one sample were thrown out. A fourth degree, twelfth order Farrow filter

was used for fractional delay. The order and degree were chosen arbitrarily. The last

step was to sum and place the result in the output buffer.
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Figure 6.1: Array Setup.
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6.2 Experiments

An array gain was generated in real-time by passing measurements over Real Time

Data Exchange (RTDX) to Matlab. The results are shown in Figure 6.2. Parts A

through D were with the array steered at 0 degrees, 1.0 m from the array. Parts E

through H were with the array steered at 45 degrees, 0.65 m from the array. Parts

I through L were with the array steered at 90 degrees, 0.65 m from the array. In all

cases, the largest signal gain was at 1500 Hz. The square wave also had large signal

gain in most cases.

Due to a number of problems with electrical and acoustic noise and interference

and the clock rate not being exactly at 8000 Hz, the following procedure was adopted.

(1) All input was low pass filtered at 350 Hz.

(2) The time domain signal was Hamming windowed.

(3) All frequency bins with harmonics of 500 Hz excluding the frequency of interest

were discarded.

(4) The frequency bins before and after those same harmonics were discarded.

(5) For the square wave, only the first harmonic was used.

(6) The signal power in the bin of interest from the middle microphone was calcu-

lated.

(7) The bins before and after were also included in the calculation.

(8) The noise power between 2000 and 3000 Hz was summed and multiplied by four.
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(9) This was done every fourth frame, and the results were sent to Matlab.

(10) The array gain, signal gain, and noise gain were run through a 20 point running

average filter.

(11) The output was observed until the array gain appeared to be near the maximum.

(12) The last two measurements were skipped because halting the program caused

noise that was effecting the results.

(13) The author then counted back 20 measurements and chose the one with the

largest array gain. This was necessary to estimate the peak gain due to the

wildly fluctuating real-time measurement results.

When the noise gain was above 4 dB, the cause was likely due to interference or

measurement error due to FFT leakage. The array gain in this situation was not

reliable. Also, note that the sampled signal from the last microphone was observed

to be distorted and of less power than the others. The magnitude was corrected in

software. The results in Figure 4.3 suggest that the time delay should be most accurate

at 500 - 1500 Hz. However, at higher frequencies, the TDE needs to be more accurate

to maintain a given level of array gain. So, a more accurate TDE does not imply higher

gain.
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Figure 6.2: Array Gain with Signal and Noise Components versus SNR at the Center
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The results of Figure 6.3 show a measurement of ERLE with and without beam-

forming. The speech segment ‘ah’ was played repeatedly for this experiment. ERLE

was averaged over each frame and the results were sent to Matlab. With beamforming

enabled, the array was aimed at 0 degrees and the speaker placed at 90 degrees. The

output was divided by the theoretical magnitude increase of the array to normalize it

back to the size of the input. Because the array was aimed away from the echo source,

the echo acted as an interference source and was suppressed. This increased the ERLE.
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Figure 6.3: (A) Real-time ERLE of ‘ah’, (B) with Beamforming.
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6.3 Conclusion and Further Work

By qualitative and quantitative analysis, this work has shown that a practical real-

time beamformer can enhance signal quality. A real-time acoustic echo canceller can

improve signal quality. In addition, the two can work together and enhance one another.

With a faster DSP or even an FPGA implementation, a number of improvements can be

made without the need for higher power algorithms. The sample rate can be increased.

The number of microphones can be increased. The echo path length and projection

order can be increased. Higher quality electronics can be used.

However, the best improvements will come from better analysis and algorithms. The

delay-sum beamformer is the simplest type of beamforming. An optimum beamformer

could replace it. Then nulls could be placed over interference sources such as the

loudspeaker, further reducing echo. Better time delay estimation techniques, such

as the state space type algorithms of Ward [19], will certainly improve performance.

Higher power acoustic echo cancellation is an active research area. The technology to

implement these algorithms has only become available within the past several years.

Last, a strategy for combining algorithms was presented. This work mostly dealt

with two very independent methods of enhancing signal quality: beamforming and echo

cancellation. However, the work of Kellermann [3] shows that the two can be combined

in such a way as to remove all but a single echo canceller. In addition, other algorithms

used were double talk detection and pole calculation. The echo cancellation algorithm

was built on the work of several previous echo cancellers. The block exact version

even offers the choice of what type of fast calculation and matrix solver to use. The

version implemented used the FFT for fast calculations and Gauss-Seidel iterations

for a matrix solver. The suggested implementation uses a fast matrix multiplication
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method and fast transversal filters for a matrix solver. So it is possible not only to

mix and match complete algorithms, but to swap bits and pieces of old algorithms to

construct new ones. By understanding how each step of these algorithms operate, it is

possible to customize and combine them to solve a particular problem.
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Appendix A

Farrow Filters Maple Code

> #Design a Farrow filter

> restart:

> N:=11: #Number of taps (minus 1)

> Pord:=4:

> MaxUseFreq:=.74: #upper useful frequency

> MinUseFreq:=.5: #lower useful frequency
> #Set up the summation in the inside of the MSE integral

> #Then force maple to use sines and cosines and expand the expression

> inside1:=omega->sum(sum(’alpha^m*c[n,m]*exp(I*n*omega)’,m=0..Pord),n=0

> ..N)-exp(I*omega*(alpha+N/2)):

> inside2:=expand(evalc(inside1(omega)*inside1(-omega))):
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> #This is the magnitude squared

> #Integrate over alpha

> inside3:=int(inside2,alpha=-0.5..0.5):

> #Pass the derivative through the omega integral

> for n from 0 to N do

> for m from 0 to Pord do

> dfinside[n,m]:=diff(inside3,c[n,m]);

> df0[n,m]:=int(dfinside[n,m],omega);

> #Maple won’t evaluate this integral correctly; so, it’s done this way

> df[n,m]:=evalf(subs(omega=MaxUseFreq*Pi,df0[n,m])-subs(omega=-MaxUseFr

> eq*Pi,df0[n,m]));

> #df[n,m]:=evalf(subs(omega=Pi,df0[n,m])-subs(omega=MinUseFreq*Pi,df0[n

> ,m]))+evalf(subs(omega=-MinUseFreq*Pi,df0[n,m])-subs(omega=-Pi,df0[n,m

> ]));

> od:

> od:
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> #Generate the additional linear constraints

> for n from 0 to N do

> G[n]:=c[n,0]+.5*c[n,1]+.25*c[n,2]+.125*c[n,3]+.0625*c[n,4]=0;

> G[n+(N+1)]:=c[n,0]-.5*c[n,1]+.25*c[n,2]-.125*c[n,3]+.0625*c[n,4]=0;

> od:

> pos:=6:neg:=5:Gall:=0:#OR IS THIS pos:=3:neg:=4?

> G[pos]:=c[pos,0]+.5*c[pos,1]+.25*c[pos,2]+.125*c[pos,3]+.0625*c[pos,4]

> =1:

> G[neg+(N+1)]:=c[neg,0]-.5*c[neg,1]+.25*c[neg,2]-.125*c[neg,3]+.0625*c[

> pos,4]=1:

> #Construct the lambda portion of the Lagrangian

> for k from 0 to (2*N+1) do

> Gall:=Gall+lambda[k]*lhs(G[k]):

> od:

> #Take derivatives with respect to the Lagrangian

> for n from 0 to N do

> for m from 0 to Pord do

> dg[n,m]:=diff(Gall,c[n,m]);

> dL[n*(Pord+1)+m]:=df[n,m]+dg[n,m]=0;

> od;

> od;

> for k from (N+1)*(Pord+1) to (N+1)*(Pord+1)+2*N+1 do

> dL[k]:=G[k-(N+1)*(Pord+1)]:

> od:
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> soln:=solve(

> {dL[0],dL[1],dL[2],dL[3],dL[4],dL[5],dL[6],dL[7],dL[8],dL[9],dL[10],d
> L[11],dL[12],dL[13],dL[14],dL[15],dL[16],dL[17],dL[18],dL[19],dL[

> 20],dL[21],dL[22],dL[23],dL[24],dL[25],dL[26],dL[27],dL[28],dL[29],dL[

> 30],dL[31],dL[32],dL[33],dL[34],dL[35],dL[36],dL[37],dL[38],dL[39],dL[

> 40],dL[41],dL[40],dL[42],dL[43],dL[44],dL[45],dL[46],dL[47],dL[48],dL[

> 49],dL[50],dL[51],dL[52]

> ,dL[53],dL[54],dL[55],dL[56],dL[57],dL[58],dL[59],dL[60],dL[61],dL[62]

> ,dL[63],dL[64],dL[65],dL[66],dL[67],dL[68],dL[69],dL[70],dL[71],dL[72]

> ,dL[73],dL[74],dL[75],dL[76],dL[77],dL[78],dL[79],dL[80],dL[81],dL[82]

> ,dL[83],dL[84],dL[85]}):
> assign(soln):

> printf("vn0=[%f %f %f %f %f %f %f %f %f %f %f

> %f];",c[0,0],c[1,0],c[2,0],c[3,0],c[4,0],c[5,0],c[6,0],c[7,0],c[8,0],

> c[9,0],c[10,

> 0],c[11,0]);

> printf("vn1=[%f %f %f %f %f %f %f %f %f %f %f

> %f];",c[0,1],c[1,1],c[2,1],c[3,1],c[4,1],c[5,1],c[6,1],c[7,1],c[8,1],

> c[9,1],c[10,1],c[11,1]);

> printf("vn2=[%f %f %f %f %f %f %f %f %f %f %f

> %f];",c[0,2],c[1,2],c[2,2],c[3,2],c[4,2],c[5,2],c[6,2],c[7,2],c[8,2],

> c[9,2],c[10,2],c[11,2]);

> printf("vn3=[%f %f %f %f %f %f %f %f %f %f %f

> %f];",c[0,3],c[1,3],c[2,3],c[3,3],c[4,3],c[5,3],c[6,3],c[7,3],c[8,3],

> c[9,3],c[10,3],c[11,3]);

> printf("vn4=[%f %f %f %f %f %f %f %f %f %f %f

> %f];",c[0,4],c[1,4],c[2,4],c[3,4],c[4,4],c[5,4],c[6,4],c[7,4],c[8,4],

> c[9,4],c[10,4],c[11,4]);
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vn0=[-.004719 .016077 -.039617 .085120 -.184715 .627821 .625296

-.182414 .083279 -.038324 .015297 -.004374];

vn1=[.001468 -.005018 .013651 -.036614 .124506 -1.254325 1.254317

-.125201 .037565 -.014622 .005845 -.001998];

vn2=[.018227 -.068488 .178188 -.388799 .808219 -.546326 -.536929

.797894 -.380001 .171311 -.063427 .015693];

vn3=[-.005873 .020073 -.054605 .146457 -.498023 1.018700 -1.017268

.500806 -.150259 .058487 -.023380 .007994];

vn4=[.002597 .016717 -.078875 .193274 -.277439 .137372 .142973

-.272958 .187542 -.072064 .008953 .007211];
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Appendix B

Fourier Transform Parts

A simple trick allows a complex signal to be broken into four parts: even-real,

even-imaginary, odd-real, and odd-imaginary. Because only a real-valued time domain

signal is used, it is possible to simultaneously take the FFT of two signals at once. The

individual parts can be reconstructed in the frequency domain. This demonstrated

below. In practice, there may be significant overhead when dividing each sample by

two. However, for this thesis, the division was not necessary until the Inverse FFT was

found. Thus the division was merged with the scaling constant in the Inverse FFT at

no extra cost.

Define the even, odd, real, and imaginary parts of a function to be

fe(t)
.
=

f(t) + f(−t)

2
(B.1)

fo(t)
.
=

f(t)− f(−t)

2
(B.2)

fr(t)
.
= <{f(t)} (B.3)

fi(t)
.
= ={f(t)} (B.4)
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and the Fourier Transform

F (ω)
.
= F{f(t)} =

∫ ∞
−∞

f(t)e−ωtdt (B.5)

Note that

F (ω) = F (−ω), forfr(t) (B.6)

F (ω) = −F (−ω), forfi(t) (B.7)

F{fe,r(t)} =
1

2

∫ ∞
−∞

fr(t)e
−ωtdt +

1

2

∫ ∞
−∞

fr(−t)e−ωtdt

=
1

2
F[fr](ω) +

1

2
F[fr](−ω)

= F[fr]e(ω) (B.8)

Using Property B.6, it is easy to show F[fr]e(ω) =
F[fr ](ω)+F[fr ](ω)

2
, which implies F[fr]e(ω) =

F[fr]e,r(ω).

F{fo,r(t)} =
1

2

∫ ∞
−∞

fr(t)e
−ωtdt− 1

2

∫ ∞
−∞

fr(−t)e−ωtdt

(Let u
.
= −t.)

=
1

2
F[fr](ω)− 1

2

∫ ∞
−∞

fr(u)e−ωudu

=
1

2
F[fr](ω)− 1

2
F[fr](ω)

=
1

2
F[fr](ω)− 1

2
F[fr](−ω)

= F[fr]o(ω) (B.9)

Again using Property B.6, F[fr]o(ω) = F[fr]o,i(ω).

The remaining two cases can be shown by repeating this procedure and using Prop-

erty B.7.


