
 1

Todd Goldfinger
Dr. Schumacher

Technology Forecast - Asynchronous Logic

Modern computers use almost exclusively what is known as synchronous design.

This means the entire CPU is governed by one clock. The clock is set just slower than

the slowest operation on the chip so that every electric signal is guaranteed to be a

completed calculation. Most people are familiar with clock speed; it's usually the first

thing displayed in an advertisement and it's what many people use as a performance

measure. Asynchronous design is an alternative design methodology that uses no system

clock. This design was used as early as the late forties, but it was quickly dropped in

favor of the easier to implement synchronous design. The issue of asynchronous design

went largely ignored until 1989 when Ivan Sutherland wrote a paper that brought the

subject back to life [1].

Since that time, several experimental and commercial asynchronous processors

have been built. Some of these include the Amulet series out of the University of

Manchester, the processor(s) designed by the Cal-Tech spin-off Asynchronous Digital

Design, and an asynchronous version of the Pentium engineered by Intel [1].

Furthermore, a yearly conference that started in 1994 is now held for asynchronous

researchers and enthusiasts. There is also interest in applications for asynchronous logic

that did not exist 50 years ago; encryption in smart cards is one. It is clear that there is

resurgence in the interest of this technology. But where is this all going? Is it possible

this is just a research fad? And if it's not, what might some of the possible outcomes be,

and what are some useful strategies to take advantage of these outcomes? First, I look at

the likelihood that this technology has a future. Then I look at a handful of scenarios and

last some possible strategies for these outcomes.

 2

Stop the Clock?

Exponential Growth of Clock Speed

Fig 1. Plot of Clock Frequency vs Year [4]

Simple Clock Speed Projection

y = 62.414e0.3703x

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10 11 12 13

Years (1 = 1994)

M
H

Z

Series1
Projection

Fig 2. The series one line represents the data points (1,95), (2,115), (3,190), (4,295), (5,435), (6,590),

(7,790), (8,1000), (9,2000). These are the points I took from Fig 1, as well as the last point, which

represents Intel's current fastest microprocessor clock. My justification for dropping the first two points is

that Intel had very little competition in the early 90s. Now there is AMD among others.

 3

 Figure 1 shows the progression of Intel's clock speeds over time. Based on Intel's

size and dominance, I believe this is an accurate reflection of the industry as well. Figure

2 is a simple exponential projection of these points done in excel. The reason I was not

worried about being very rigorous with this plot is because of its exponential nature.

Under the assumption that it is in fact exponential (which seems clear to me from the first

plot), even if the exponent is a little off, clock speeds could easily reach over one

quadrillion hertz within my lifetime. If electrons could move at the speed of light (and

they don't), then they could only go a tenth of a micrometer in a clock tick. This is the

size of a transistor on a modern day microprocessor. Go just a few orders of magnitude

smaller and this is the diameter of an atom of silicon. And if it seems like there are

serious problems at those frequencies, keep in mind that engineers are already running

into clock skew problems. This is in addition to the problems of electrons quantum

tunneling [2,3] and increasing electronic interference. Hence it seems very unlikely that

this curve will remain exponential for many decades longer. It will likely hit an

inflection point and become an s-curve with a relatively short growth phase and a quick

flattening out phase. I claim that staying with solely with synchronous design for the

duration of my lifespan is extremely unlikely.

Reemergence of Asynchronous

 Why is it that asynchronous logic makes a comeback now instead of some earlier

or later decade? In previous decades, synchronous worked well and there was no need to

look at other technologies. However, speed and number of transistors per chip have

increased several orders of magnitude, and we are at a point where it's becoming clear

that the number of problems with the current design will become more difficult very

soon. I see it as no coincidence that asynchronous design methodologies have found their

way back into industry just recently. It may be that there is a collective realization that

there has to be change, or that a few key people have forced engineers in the industry to

accept this. Either way, I think asynchronous has come back because limits to the current

technology are in sight.

 4

Scenarios

In the following situations I make a few assumptions. The rate of increase of

clock speeds will slow dramatically or run into physical limitations within my life span.

At some point in the future, one or more radically different technologies will replace or at

least integrate with our current model of computing; it will solve all EMI and power

consumption problems as well. I see clocked silicon based chips as one step in the

evolution of computing. It started with people, moved into mechanical computing

devices, calculators, vacuum tube based computers, transistor based computers, etc. If

one company is very successful in designing and selling a fully functional asynchronous

microprocessor, the rest of the industry will follow. Those who don't may quickly fall

behind. Last, engineers are smart and find ways around apparent obstacles.

1) Asynchronous is rapidly accepted; radical technologies lie far in the future.

 The current enthusiasm for asynchronous design accelerates and spreads through

academia. As a result, new tools are developed, there is more experience floating around,

classes in asynchronous design are being taught to undergraduates. Gradually this filters

through into the industry and asynchronous becomes the accepted standard. This

happens in a couple different ways. The first is in the mobile computing and DSP areas.

Asynchronous design will be easily accepted in this area because it solves

electromagnetic interference problems, uses less power in devices that use batteries, and

design is easier for some small-scale devices. The adoption of asynchronous design

should happen relatively quickly, especially where it may be absolutely necessary or at

least makes the problems far easier to solve. The second area is in personal computers

and other large-scale designs. The goal in this area is to make a general-purpose

computer as fast as possible. There is no need to worry about power and EMI problems.

So even though asynchronous design may be quickly accepted in academics, it may take

a little longer for personal computers. In this scenario it takes several years longer to

become mainstream than in the mobile computer area. After this time, different

companies will jump from the synchronous s-curve to the asynchronous s-curve over a

period of a few more years. Along the way, however, bits and pieces of modern

synchronous processors will be converted to asynchronous but not the entire processor.

 5

Finally, asynchronous design prospers in the industry for at least two to three decades

before a newer technology comes into play. At this point asynchronous is well into its s-

curve. Instead of being completely replaced, it is merged with this new technology and

continues to live on in niche markets.

2) The synchronous s-curve is pushed to the limit; radical technologies lie far in

the future.

 Interest in asynchronous design cannot be sustained. It never catches on in the

majority of major universities, and corporations decide not to invest any more money in

the technology. Engineers think they can push the synchronous s-curve for several

decades longer. They succeed in doing so by overcoming all sorts of obstacles time and

time again. In the mobile computing industry, asynchronous does catch on, but only

where it is absolutely necessary to continue developing better products. There is only

limited experience and unsophisticated tools for use by companies who routinely use

asynchronous design. The scenario breaks into two at this point.

A) Synchronous design continues to be successful until a radical new technology is

developed. Asynchronous is almost completely forgotten except for in niche markets.

B) Physical limitations that cannot be solved begin to occur well before a new technology

comes along. At this point engineers have no choice but to take another look at

asynchronous design. Large companies and the few companies with asynchronous

experience will thrive in this market. Other companies will struggle or go bankrupt

because they don't have the money and resources to switch gears all of a sudden. As a

result, there is a weeding out period in which many companies disappear because they are

not able to keep up when the industry suddenly switches to another technology. This also

means that in the following years there will be less competition and the computer

industry will have a brief slow down. After a few years it will pick back up again. Soon

a radically new technology will arrive, and asynchronous will be seen as a short bridge to

gap the time between synchronous design and this new technology. The end result is that

asynchronous still falls off into obscurity, but many companies that did not have

experience with it will be wiped out.

 6

3) Asynchronous is rapidly accepted; radical technologies are very near.

 As in scenario one, asynchronous quickly becomes popular and is quickly

accepted. This time, however, another technology comes in at about the same time and is

superior to asynchronous design in many respects. It still takes time for this technology

to gain acceptance because it is so different and no one has any experience with it. In the

mean time asynchronous begins to replace synchronous and competes with this new

technology for a time. Eventually the new technology becomes popular and well

understood; asynchronous goes to niche markets and finds some applications in

combination with the new technology. Because all three technologies are around within

the same period of time, engineers are knowledgeable of both synchronous and

asynchronous systems. So, many solutions to engineering problems (at least during the

transition period) use a combination of synchronous, asynchronous, and this new

technology.

4) The synchronous s-curve is pushed to the limit; radical technologies are very

near.

 There is never any need to switch to asynchronous design except for possibly in

niche markets and in mobile computing for a short period. This new technology is

quickly accepted and solves power, EMI, and problems of distributing the clock. While

the industry gets over the learning curve, synchronous continues to thrive for several

more years and ultimately is combined with the new technology in many applications.

5) Asynchronous competes with many new technologies.

 Just as asynchronous is becoming widely accepted in academics and the

engineering community, there is an explosion in new and fundamentally different

technologies. These technologies aren't necessarily superior to synchronous or

asynchronous design, but each solves at least one problem with current day

microprocessors. Some of them fix EMI problems, others are extremely low power, and

others have the potential to grow exponentially faster for at least another generation or

two. Some of them are used in niche markets and have entirely different uses than

modern processors, and some have a combination of these problems. The hardware

 7

market has essentially become a scaled down software market in terms of choices of

different technologies. Some companies adopt asynchronous design; specifically the

ones that have already begun to invest in it. In the personal computer, asynchronous

never takes hold because there are other technologies in their infancy that offer far better

prospects for speed. Individual engineers are familiar with at most two or three of these

technologies, and the managers are responsible for knowing which technology to use to

solve a particular problem. So asynchronous is well understood by only certain people

and there are university classes that teach it, but not many.

6) Synchronous outlives asynchronous.

 As asynchronous begins to become popular, it becomes apparent that synchronous

still has a way to go. Eventually, asynchronous turns out to be mostly hype and the

industry continues to ride the synchronous s-curve while leaving asynchronous behind.

However, asynchronous still finds applications in mobile computing and as a way of

saving power in critical situations. There is a lot of experience in asynchronous, but one

cannot assume that every engineer is familiar with this design methodology.

Fig 3. A picture showing where these strategies lie.

 8

Strategies

 Now that we have seen some possible outcomes of the resurgence of

asynchronous design, we will look at what choices a company that is looking at

asynchronous design has. For each scenario, there are three strategies. 1) Ignore

asynchronous design. 2) Make the switch as early as possible (now). 3) Wait until the

last possible minute. For each strategy there is a possible range of values of -4 to 4. I

add a point if the strategy results in choosing the right technology for the mobile

computing market at an early stage. I add another point if it also works out in the long

run. I do the same for the personal computer and super computer industry. The strategy

gets a negative point if they choose the wrong technology. No points are assigned for

situations where it doesn't matter.

Fig 4. Evaluation Matrix

 From figure 4 it seems that strategy two dominates strategy three in most cases.

However, it doesn't do significantly better than strategy one; so, I don't draw any

conclusions there. Strategy three seems the safest strategy because it has the least

varying results; it has the least chance for reward but also the least chance for disaster.

 9

Unfortunately, this doesn't tell us much more because of the simplicity. There are a

number of problems. Some of the numbers were difficult to choose and so ended up

being somewhat random looking. Also, some situations don't even make sense. For

strategy three, no one would enter the market late if asynchronous design doesn't catch

on. Choosing more sophisticated evaluation criteria can solve this. One might include

the fact that getting into asynchronous early is a huge advantage if it turns out to be

successful. There may also be many more strategies. A company might only want to

train its engineers in asynchronous design instead of both training them and buying

expensive new equipment and designing special purpose programs for design. This could

save a lot of money if asynchronous design turns out to be bogus, but if it's successful,

the company will lose several months buying and installing new equipment.

Furthermore, this chart doesn't take into account extreme scenarios like 2b. In this

scenario, not getting into asynchronous early could be a terminal error for small

corporations. A much more in depth analysis using some of these ideas may show more

information from these simple situations I have presented.

Closing Remarks

 In the last decade, asynchronous design has become a feasible option in the minds

of some researchers. It has gained some acceptance and there are now commercial

computer chips that are fully or mostly asynchronous. I believe that asynchronous design

has a reasonable chance of replacing synchronous design in the near future if there is no

other superior technology. This is due to physical limitations of synchronous logic as

well as other inherent problems. By looking at a number of possible future scenarios, we

see that in some situations asynchronous can thrive and in others it is lost forever.

However, I believe that the most likely scenarios are the middle ground ones, where

asynchronous is semi-successful for at least a short time and eventually it becomes just

another tool engineers can use to solve computing problems. The extreme scenarios are

upper and lower bounds for the range of possibilities. We can see from analyzing these

simple scenarios that if a company decides to take the route of asynchronous logic, most

scenarios favor early adoption. However, only scenario 2b proves to be very detrimental

to completely ignoring asynchronous logic.

 10

Sources

[1] Tristram, Claire. Clockless Chips. Technology Review; pp 37. October 2001.

[2] Gates, Brian. Interview with roommate. Undergraduate Chemical Engineer.

[3] The Future of Transistors.
http://www.pbs.org/transistor/background1/events/transfuture.html.

[4] Glover, Kerry; Jones, Steve. System Power Management.
http://www.chipcenter.com/analog/c040.htm.

