Technical Documentation of a Concordance

Platform: any that supports java 1.2

Langauge: Java

Introduction and High Level Design

The main class is the Concordance class.  When the main method begins the GUI is created, and a reference to the Concordance class is passed to the GUI.  Once this happens, the methods in Concordance are run from action handlers set up by the GUI.  In this manner the GUI needs to know only of the Concordance interface so that the GUI is self-contained.  No other classes depend on the GUI.  Unfortunately, Concordance implements only the bare bones functionality needed by the GUI interface.  If the GUI should be changed to add functionality to the program, that extra functionality would have to be added to the Concordance class and the interface updated.

The main data structure is a pair of red-black trees that store Word objects.  All sorting and searching is done from within the trees.  Prior to Words being put into trees, the file is parsed and broken into sentences; the sentences are then parsed and broken into words.  There is also Dictionary class that contains words the user does not want in the concordance.  Every word is compared against the dictionary before being placed into the tree.  The Dictionary class uses the same tree data structure as the main structure to store its Words.  This makes all comparisons order log(n), with m comparisons, m being the number of words in the input file.  We don't believe this to be overly costly, and we don't know of a better way to do the comparisons.  Also, it would be a simple matter to replace the internal data structure of the Dictionary; this has in fact been done and tested.  Generally all classes pass word objects around to keep things quick simple; however, there are a few interface anomalies where this does not happen.

Low Level Design


The Word class consists of a String to store the word, a vector to store the number of each occurrence of the word, and a vector to store the number of each sentence of the word.  These values are not sorted in any way; however, it is assumed that the values are being read into the Word class in a sequential fashion so that the numbers should be stored in increasing order.  The Word class has the appropriate methods to add words and to access the data in the class.  Also, the Word class implements a Comparable and Updatable interface.  At one time this code was used, but no longer is since the main data structure was completely rewritten.  However, it was left in there for future changes.  Comparable allows you to compare Words. Updatable allows Words to be updated internally without the calling class needing to know the internals of Word.  The methods of these interfaces have a method parameter.  This parameter allows Word to decide how words are to be compared; there can be multiple ways of comparing words (i.e., by text, by number of occurrences, word length, etc).  This also allows Words to be easily passed around and worked with by other classes which have no knowledge of Word's interface.


The TextInput class reads in a file.  You must specify whether you want the file read in by sentence or by new line delimiters.  The TextInput class will return the delimited Strings one at a time.


The SentenceTokenizer class simply takes a string of words and parses into sentences.  A sentence is considered to be a line of characters terminated by '.', '?', or '!', and followed by a capital letter within the next 3 non-white space characters.  Also, titles, such as Mr. Bob, are not considered the end of a sentence.  Otherwise, SentenceTokenizer works similar to StringTokenizer. 


WordTokenizer breaks up a string by words.  A word is anything delimited by the PUNC field in the WordTokenizer class.  Also, there are two characters ',' and '-' which are specially dealt with because they tend to cause problems with parsing words.  Otherwise, WordTokenizer works similar to StringTokenizer.


The GUI primarily uses action handlers to take care of events.  It also has to keep track of states (i.e., does the user want to parse by sentence or new line, which mode are we in, etc).  The GUI also uses two small classes, GuiTextInput and GuiText.  These are just used for displaying or acquiring information from the user.  The GUI also truncates the text it displays before displaying it in the text boxes.  For some reason Java can only display so much text.  We couldn't find a way around this problem.


Concordance does all of the high level work of outputting results and creating and manipulating the lower level classes.  Concordance also has a second dictionary so that the user can specify additional words that he/she does not wish to be in the Concordance.  Both this dictionary and the primary one are in Concordance, along with both Trees, and the tokenizers.


There are two classes used to contain the words that are gathered into the concordance: Tree and NumTree.  The difference between the classes is the organization of the words; in Tree, the words are sorted alphabetically, and in NumTree, the words are sorted by the number of times a particular word is found in the original document.  These two sorting methods are the only two ways that words are needed to be sorted for the purposes of the application.  Both classes sort the words using a Red-Black binary tree structure inspired by the Data Structures text, both classes contain similar methods, and both classes utilize the same node class for the trees.


The Tree Class is the initial method by which words are gathered into the concordance and sorted in a state by which they can be quickly found and numerically processed.  There are several particular methods of note in the Tree Class: they are the add method, the find method, the inOrderCopy method, and the sortByNum method.


The add method and supporting methods add a word to the tree structure.  Add is called with the name of a word, the location in the input file that the word is found, and the sentence in the input file where the word is found.  When add is called, it performs one of three actions.  If the tree is empty, it creates a Word object from the incoming word, applies that Word to a node, and sets that node as the root of the tree.  Otherwise, it searches the tree for a Word that has the same name.  If such a Word is found, the location and sentence numbers are communicated to that Word to be stored with the locations and sentences of other occurrences of the word in the input file.  If it is not found, a new Word is created, assigned to a node, and added to the tree according to the Red-Black algorithm alphabetically by name.


The find method is called with a Word object as input that has the same name as a word stored in the tree.   If such a word is found in the tree, its object is returned, otherwise a null is returned.  Find calls an internal function that uses a while-loop algorithm to traverse the tree.


The inOrderCopy method is used to list the contents of the tree.  The contents are listed alphabetically by name, and returned in a Vector object so that they may be easily accessed and manipulated.


The sortByNum method is similar to the inOrderCopy method.  As a NumTree is created after a Tree has been constructed, it is considered excessively slow to generate a NumTree from the Vector returned by inOrderCopy.  The sortByNum routine generates a NumTree directly from the contents of the tree, traversing the tree by a recursive algorithm.


The NumTree class is generated after a Tree has been constructed.  It is desirable, for the purposes of the concordance, to be able to sort the words by the number of times they occur in the input file.  The NumTree class sorts the words first by the number of occurrences, and resolves duplicate numbers by sorting second alphabetically by name.  The NumTree methods are largely the same as the methods in the Tree class, minus, naturally, the sortByNum method, except for the addition of a particular method entitled index.


The index method generates a string from a Word that allows Words to be compared by the basis of the sort mentioned above.  The Words are sorted into the tree alphabetically by the string generated by this method.  The string length is based on the total number of words in the Tree object.  Each digit of the number of occurrences is separated by hyphen, with the actual word following.  Thus, if the word “spaghetti” appears 732 times in a file consisting of 5872 words, and the word “cheese” appears 94 time, the index for “spaghetti” would be “0-7-3-2-spaghetti”, and the index for “cheese” would be “0-0-9-4-cheese”.  The Word “spaghetti” would therefore be sorted above the Word “cheese” based alphabetically on the index string.


Each of these trees require objects to be used as nodes.  These objects are of class TreeNode.  The TreeNode class is relatively simple.  It provides a means by which a single Word may be stored at each node, and adds specific methods and fields needed for a node.  These additions include fields to specify the left and right child nodes of the node, a field to specify the parent node, and a boolean field to specify whether the node is currently of color Black or Red for sorting in the Tree classes.

Concluding Remarks

 
The most difficult part of changing the project will probably come from changing the GUI.  However, the good news is that changing the GUI will have no effect on any other part of the project.  The GUI code is a bit messy and difficult to work with.  This is partly because of all of the action handlers and components that are involved.  We believe there is a correct way to do put together a GUI in Java so that it's elegant and neat, but I'm not aware of how to do that.  However, the GUI does work and simple modifications are easy enough.  Also the concordance class only implements bare bones functionality.  Changing to add more functionality should be reasonably easy.  The underlying implementation of the data structures and classes can be easily changed or replaced; we did actually have to do this a few times.

Alla, Todd, Mike

